Code No: C8905 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.TECH I SEMESTER EXAMINATIONS, APRIL/MAY-2012 OPTIMIZATION TECHNIQUES AND APPLICATIONS (ENGINEERING DESIGN)

Time: 3hours

Max.Marks:60

Answer any five questions All questions carry equal marks

- 1. $Min Y = 25600\lambda^4 + 16\lambda^2 8\lambda + 1$ using Quadratic interpolation method. Take step size as 0.1. Show calculations only for two cycles.
- 2.a) Define gradient of a function. Explain why is it called steepest ascent direction?
- b) Using Steepest decent method $Min f(X) = x_1^2 + x_2^2 2x_1 4x_2 + 5$. Take a starting point as a [0, 0]. Show calculations only for two iterations.
- 3.a) State the arithmetic-geometric inequality theorem and using it derive dual problem for unconstrained geometric problem.
- b) Min $f(x) = 16x_1x_2x_3 + 4x_1x_2^{-1} + 2x_2x_3^{-2} + 8x_1^{-3}x_3$ where $x_i > 0$
- 4. Find the shortest path from A to E in the following network using Dynamic Program

	B1	B2	B3
А	2	2	2

	C1	C2
B1	3	4
B2	4	-
B3	5	2

	D1	D2
C1	-	2
C2	5	3

	E1
D1	3
D2	4

5. Consider the following LPP

 $Max Z = 2x_1 + x_2 + 4x_3 - x_4 st$ $x_1 + 2x_2 + x_3 - 3x_4 \le 8, -x_1 + x_3 + 2x_4 \le 0, 2x_1 + 7x_2 - 5x_3 - 10x_4 \le 21, x_i \ge 0$

- a) Solve the LPP by Simplex method
- b) Find the effect of change b to [3,-2, 4].

- 6.a) Define Simulation. Explain the characteristics of various types of simulation models.
- b) The daily demand of shakun Bread shows the following frequency distributions

Daily demand	0	10	20	30	40	50
Probability	0.01	0.20	0.15	0.5	0.12	0.02

Simulate the demand for next 5 days with the sequence of random numbers of 48,78,19,51,56.

- 7. Solve the following ILPP by branch-bound method $Max \ Z = 2x_1 + 3x_2$ $s.t \ 6x_1 + 5x_2 \le 25, \ x_1 + 3x_2 \le 10, \ x_i \ge 0$ and integers.
- 8.a) The width of a slot on duralumin forging is normally distributed. The specification of the slot width is 0.900 ± 0.005 . The parameters $\mu = 0.9$ and $\sigma = 0.003$ are known from the past experience in production process. What is the % of scarp forgings?
 - b) Write about the chance constrained algorithm.
